hello大家好,我是本站的小编子芊,今天来给大家介绍一下动力机械设备故障诊断技术(机械设备故障诊断技术探索论文)的相关知识,希望能解决您的疑问,我们的知识点较多,篇幅较长,还希望您耐心阅读,如果有讲得不对的地方,您也可以向我们反馈,我们及时修正,如果能帮助到您,也请你收藏本站,谢谢您的支持!

动力机械设备故障诊断技术(机械设备故障诊断技术探索论文)

随着工业化的迅速发展,动力机械设备在现代生产中扮演着重要的角色。随之而来的设备故障也给生产效率和安全带来了严重的挑战。为了解决这一问题,研究人员不断探索动力机械设备故障诊断技术。

动力机械设备故障诊断技术是指通过对机械设备的状态进行监测和分析,准确识别设备故障原因和位置的技术手段。其目的是提高设备的可靠性和可用性,降低生产成本和故障风险。

在动力机械设备故障诊断技术中,最常用的方法是基于振动分析的故障诊断。振动信号可以提供大量的故障特征,例如频率、幅值和相位等。通过对振动信号进行分析和处理,可以判断设备是否存在故障,并确定其具体原因。

除了振动分析,还有许多其他方法可以用于动力机械设备故障诊断。温度监测、油液分析和声音识别等。这些方法可以综合利用不同的信号特征,提高诊断的准确性和可靠性。

动力机械设备故障诊断技术仍面临一些挑战。设备的工作环境复杂多变,使得故障诊断变得困难。故障特征的提取和分析需要大量的专业知识和经验。设备的故障诊断需要及时准确,以确保生产的连续性和安全性。

为了克服这些挑战,研究人员应持续开展相关研究,并结合人工智能和大数据等新兴技术,提出更加高效和准确的动力机械设备故障诊断方法。工厂和企业也应重视设备的日常维护和保养,以预防设备故障的发生。

动力机械设备故障诊断技术在现代工业中有着重要的应用价值。通过持续的研究和创新,我们有望提高设备的可靠性和可用性,提高生产效率和安全性。也需要加强维护工作,预防设备故障的发生。我们才能够实现工业化的可持续发展。

动力机械设备故障诊断技术(机械设备故障诊断技术探索论文)

机械故障诊断 需要进一步确定故障的性质,程度,类别,部位,原因,发展趋势等,为预报,控制,调整,维护提供依据。主要包括信号检测,特征提取,状态识别,诊断决策。 诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障数据中心的作用。目前英国在摩擦磨损、汽车、飞机发动机监测和诊断方面仍具有领先的地位。 欧洲一些国家的诊断技术发展各具特色。如瑞典SPM公司的轴承监测技术,AGEMA公司的红外热像技术;挪威的船舶诊断技术;丹麦的B&K公司的振动、噪声监测技术等都是各有千秋。日本在钢铁、化工等民用工业中诊断技术占有优势。东京大学、东京工业大学、京都大学、早稻田大学等高等学校着重基础性理论研究;而机械技术研究所、船舶技术研究所等国立研究机构重点研究机械基础件的诊断研究;三菱重工等民办企业在旋转机械故障诊断方面开展了系统的工作,所研制的“机械保健系统”在汽轮发电机组故障监测和诊断方面已经起到了有效的作用。 我国诊断技术的发展始于70年代末,而真正的起步应该从1983年南京首届设备诊断技术专题座谈会开始。虽起步较晚,但经过近几年的努力,加上政府有关部门多次组织外国诊断技术专家来华讲学,已基本跟上了国外在此方面的步伐,在某些理论研究方面已和国外不相上下。目前我国在一些特定设备的诊断研究方面很有特色,形成了一批自己的监测诊断产品。全国各行业都很重视在关键设备上装备故障诊断系统,特别是智能化的故障诊断专家系统,在电力系统、石化系统、冶金系统、以及高科技产业中的核动力电站、航空部门和载人航天工程等。工作比较集中的是大型旋转机械故障诊断系统,已经开发了20种以上的机组故障诊断系统和十余种可用来做现场故障诊断的便携式现场数据采集器。透平发电机、压缩机的诊断技术已列入国家重点攻关项目并受到高度重视;而西安交通大学的“大型选转机械计算机状态监测与故障诊断系统”,哈尔滨工业大学的“机组振动微机监测和故障诊断系统”。东北大学设备诊断工程中心经过多年研究,研制成功了“轧钢机状态监测诊断系统”,“风机工作状态监测诊断系统”,均取得了可喜的成果。 可用于机械状态监测与故障诊断的信号有振动诊断、油样分析、温度监测和无损检测探伤为主,其他技术或方法为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最为充分。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒频谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅里叶变换、Winger分布和小波变换等。而当代人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不仅在理论上得到了相当的发展,且己有成功的应用实例,作为人工智能的一个重要分支,人工神经网络的研究己成为机械故障诊断领域的一个最新研究热点。 随着计算机技术、嵌入式技术以及新兴的虚拟仪器技术的发展,故障诊断装置和仪器己经由最初的模拟式监测仪表发展到现在的基于计算机的实时在线监测一与故障诊断系统和基于微机的便携式监测分析系统。这类系统一般具有强大的信号分析与数据管理功能,能全面记录反映机器运行状态变化的各种信息,实现故障的精确诊断。随着网络技术的发展,远程分布式监测诊断系统成为目前的一个研究开发热点。

机械设备故障诊断技术的意义

研究与发展设备状态监测与故障诊断技术的意义有(BCD)。

A.可以避免事故发生 B.有助于将按时维养改为视情维养 C.有助于实现故障预测和报警 D.能够降低设备生产成本

在线状态检测与故障诊断的定义的扩展:

状态监测与故障诊断就是给机器看病。人不可能不生病,机器在运行过程中出现故障也是不可避免的。状态监测是指通过一定的途径了解和掌握设备的运行状态,包括利用监测与分析仪器(在线的或离线的),采用各种检测、监视、分析和判别方法,对设备当前的运行状态做出评估(属于正常、还是异常),对异常状态及时做出报警,并为进一步进行的故障分析、性能评估等提供信息和数据。

故障是指机械设备丧失了原来所规定的性能或状态。通常把设备在运行中所发生的状态异常、缺陷、性能恶化、以及事故前期的状态统统称为故障,有时也把事故直接归为故障。研究与发展设备状态监测与故障诊断技术的优点的扩展:

1、及时发现故障的早期征兆,以便采取相应的措施,避免、减缓、减少重大事故的发生;

2、一旦发生故障,能自动纪录下故障过程的完整信息,以便事后进行故障原因分析,避免再次发生同类事故;3、通过对设备异常运行状态的分析,揭示故障的原因、程度、部位,为设备的在线调理、停机检修提供科学依据,延长运行周期,降低维修费用。

机械设备故障诊断技术探索论文

电动机故障诊断技术的应用分析论文 无论是在学习还是在工作中,大家一定都接触过论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。相信写论文是一个让许多人都头痛的问题,下面是我收集整理的电动机故障诊断技术的应用分析论文,欢迎阅读与收藏。 摘要: 当前,大型机械设备中安装电动机是非常普遍的,是辅助机械设备生产功能的一种手段,然而电动机在长期不间断工作,在电能转化为机械能的过程中造成温度持续上升、电动机性能降低、工作效率低下、电动机出现故障的情况,因此故障诊断技术的快速发展是延长电动机使用寿命的关键。本文立足于现实角度,针对现阶段电动机容易出现故障的类型,维修管理中应用的故障诊断技术的如何应用进行分析。希望通过本次研究,来探讨故障诊断技术在电动机维修管理上的应用情况,从而对相关专业知识有更深层次的理解。 关键词: 故障诊断技术,电动机,维修管理,技术 引言: 电动机的出现可以追溯到上个世纪初,随着二次工业革命的快速发展,电动机发挥了巨大的作用。随着我国科学技术、生产技术的突飞猛进,电动机在制造业、工业、农业中发挥了巨大的作用。然而长时间通过工程机械高频率使用电动机,很容易造成电动机故障。故障诊断技术也顺势而生,当前电动机的故障主要包括四种类型,然而该如何进行故障诊断,从而对症下药,是当前专家学者与技术人员共同重视的问题,也是需要持续研究的课题。 1、电动机出现的故障类型分析 1.1转子故障 转子故障主要是因为电动机在长期运行的过程中,由于转子长期处于机械制动的高频率里,所以很容易存在转子故障。电动机转子也包括两个板块:定位轴承、非定位轴承。定位轴承主要是承担转子在高速运转过程中承担负荷力度。在电动机运行的过程中为了避免其他外部作用力造成的损害电动机的情况,还需要安装非定位轴承。 定位轴承与非定位轴承都可能因为电动机遭受了各种作用力造成损害或者损毁的情况,最终导致电动机出现转子故障,这种故障出现是电动机的常见故障之一,也是电动机无法持续运转的关键因素,最终形成断条。 1.2定子故障 定子故障的产生很大程度是因为电动机的外部绝缘体受到了损害导致的;还有一种可能是由于电动机在使用的过程中出现了匝间短路故障。一旦出现了匝间短路则匝间绝缘需要承担暂态过电压。出现这种情况很大程度上是由于电动机长期处于较差环境中,并且持进行高速作业,造成的短路故障、绝缘变形、绝缘损坏的情况下出现的定子故障。 定子故障的产生也是非常常见的,维修人员可以通过故障检修技术来探讨电动机的使用状况、预计电动机的未来使用寿命。定子故障的产生也说明电动机的各个零部件、线路的性能出现了问题。 1.3气隙偏心故障 气隙偏心故障的产生是由于电动机在组装过程中产生零部件、线路出现偏差。出现这种故障一般情况下是由于组装问题、组装人员专业素质导致的。 出现气隙偏心故障的另一原因就是电动机长期作业,在不断震动和高频度使用的过程中造成了零部件松动、轴承故障,或者是因为定子铁芯内径的椭圆度不符合电动机的长期作业指标,从而导致的气隙偏心故障。一旦出现这种故障,很容易产生连锁效应,导致电动机无法正常运作,最终导致定子、转子之间出现了间隙。当电动机无法正常运转时,自然对工程机械的使用造成了困难。 1.4轴承故障 轴承故障的产生原因与气隙偏心故障有相似之处,也是由于零部件长期作业的过程中出现了松动、间隙之后产生的问题。由于轴承承担着电动机运转的多方力量,所以在实际运作的过程中很容易出现温度升高的情况。当温度不断升高,则轴承的径杆因热量影响,产生胀力,从而使轴承松动。电动机的轴承受到转子重力的影响,也必然会导致轴承径杆的表面因为长时间的旋转导致了磨损的情况。再加上轴承圈和轴表面在长期的旋转中呈现机械摩擦,最终导致电动机内部出现热量,最终对轴承造成破坏,导致电动机无法正常、持续的运转。 2、电动机故障诊断技术的应用分析 2.1神经网络诊断 神经网络诊断的方法是目前使用较多的一种诊断方法。神经网络诊断是模仿人类大脑神经元结构,将电动机内部作为大脑结构,从而建立起非线性动力学网络系统,最终由各个单元进行集成式扫描处理,高度并联。 通过互联网数学模拟的能力,进行电动机的故障诊断工作。神经网络诊断方法与传统的计算机诊断方法有所不同。只需要通过软件编制相应的程序,以软件编制任务为基础,高度实行诊断指令,感知与处理电动机内部各个零部件的参数、具体数据,并对比故障之前的.电动机各项零部件的参数,从而扫描出高故障的零部件样本。 通过这种方法,能够更强的感知到电动机内部故障,判断是定子故障还是转子故障,并判断什么区域的零部件出现了松动、磨损的情况。可以看出神经网络诊断主要是将电动机内部各项参数提前掌握,最终实现运算、对比、扫描工作来确诊。 2.2专家系统诊断 专家系统故障诊断与神经网络诊断有相似之处,前者是依靠互联网数字技术,而专家系统诊断则是依靠了人工智能技术。该技术是综合了电动机故障检修相关专家的意见,并结合智能技术检测电动机各项参数,最终进行综合判断。 在使用专家系统诊断时,工程师需要根据自身知识素养来建立诊断模型,通过模型对比,逐一排查的方式,对电动机故障确诊。这种方法是目前较为新颖的检测技术,在建立模型、与专家系统诊断结合的过程中,能够对应解决故障,针对性延长电动机使用寿命,而且综合判断的准确率很高,在快速检测中实现全面排查工作,还能够对电动机有更加系统的诊断报告,帮助相关人员了解与判断电动机状态、未来预计使用寿命。 2.3信号处理诊断 信号处理诊断技术是针对电动机发生故障后发出信号、指令来判断故障情况。除了一些先进的电动机机器设备外,一些企业会在电动机的绝缘设备上安装诊断用信号处理装置,通过安装这种装置,能够完全对应信息处理要求。而维修人员、工程师则根据信号处理诊断技术,对电动机发出的信号时域、时频来进行分析(分析内容是信号的时域、频域、频率分量的变化、信号非平稳时的时变函数判断),从而对相关设备发出的故障进行计算、参数对比,信号处理方式。 2.4混合诊断方法 混合诊断方法也是常见的故障诊断技术,是结合以往的应急型故障诊断方法(该方法需要综合素质较高的工程师、检修工人来进行,结合仪器检测来综合判断电动机故障原因,但由于是肉眼检测和主观判断检测,所以准确率不高)的基础上,结合电动机维修管理工作,实施定期维护、管理工作,来进一步获取电动机内部定子、转子、各项零部件的数据参数,从而避免一旦出现故障会出现明显的数据误差,不利于判断重点损坏区域。当前,这种故障诊断技术随着互联网技术、数字技术的推进,也逐渐走向智能化,方便检修人员实时进行参数对比,方便预判电动机的状态,制定故障维修方案。 3、结束语 本文主要分析的是故障诊断技术在电动机维修管理中的应用,针对目前电动机故障类型进行系统分析与探讨,并针对故障诊断技术的分别具体应用进行详细的探讨,希望通过本文的分析,能够对相关专业知识有更深层次的了解。电动机是工程机械运行的重要组成部分,因此了解故障诊断技术的基础上,能够对相关专业研究有一定的引导作用。 参考文献 [1]刘迎春.故障诊断技术在煤矿机电设备维修中的运用探讨[J].现代工业经济和信息化,2019,9(02):111-113. [2]王镇林.“电动机故障诊断”实训教学中任务驱动教学法的“微课”应用[J].科技创新导报,2018,15(31):144,146. [3]孙慧影,林中鹏,刘银丽,李萌.基于随机游走蜂群算法优化的RBF神经网络电动机故障诊断研究[J].水电能源科学,2017,35(08):165-168. ;

机械设备故障诊断与维修心得体会

机械故障诊断  

需要进一步确定故障的性质,程度,类别,部位,原因,发展趋势等,为预报,控制,调整,维护提供依据。主要包括信号检测,特征提取,状态识别,诊断决策。  诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio

Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING

COOLING

ADCISOR等。由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用。  英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障数据中心的作用。目前英国在摩擦磨损、汽车、飞机发动机监测和诊断方面仍具有领先的地位。  欧洲一些国家的诊断技术发展各具特色。如瑞典SPM公司的轴承监测技术,AGEMA公司的红外热像技术;挪威的船舶诊断技术;丹麦的B&K公司的振动、噪声监测技术等都是各有千秋。日本在钢铁、化工等民用工业中诊断技术占有优势。东京大学、东京工业大学、京都大学、早稻田大学等高等学校着重基础性理论研究;而机械技术研究所、船舶技术研究所等国立研究机构重点研究机械基础件的诊断研究;三菱重工等民办企业在旋转机械故障诊断方面开展了系统的工作,所研制的“机械保健系统”在汽轮发电机组故障监测和诊断方面已经起到了有效的作用。  我国诊断技术的发展始于70年代末,而真正的起步应该从1983年南京首届设备诊断技术专题座谈会开始。虽起步较晚,但经过近几年的努力,加上政府有关部门多次组织外国诊断技术专家来华讲学,已基本跟上了国外在此方面的步伐,在某些理论研究方面已和国外不相上下。目前我国在一些特定设备的诊断研究方面很有特色,形成了一批自己的监测诊断产品。全国各行业都很重视在关键设备上装备故障诊断系统,特别是智能化的故障诊断专家系统,在电力系统、石化系统、冶金系统、以及高科技产业中的核动力电站、航空部门和载人航天工程等。工作比较集中的是大型旋转机械故障诊断系统,已经开发了20种以上的机组故障诊断系统和十余种可用来做现场故障诊断的便携式现场数据采集器。透平发电机、压缩机的诊断技术已列入国家重点攻关项目并受到高度重视;而西安交通大学的“大型选转机械计算机状态监测与故障诊断系统”,哈尔滨工业大学的“机组振动微机监测和故障诊断系统”。东北大学设备诊断工程中心经过多年研究,研制成功了“轧钢机状态监测诊断系统”,“风机工作状态监测诊断系统”,均取得了可喜的成果。  可用于机械状态监测与故障诊断的信号有振动诊断、油样分析、温度监测和无损检测探伤为主,其他技术或方法为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最为充分。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒频谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅里叶变换、Winger分布和小波变换等。而当代人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不仅在理论上得到了相当的发展,且己有成功的应用实例,作为人工智能的一个重要分支,人工神经网络的研究己成为机械故障诊断领域的一个最新研究热点。  随着计算机技术、嵌入式技术以及新兴的虚拟仪器技术的发展,故障诊断装置和仪器己经由最初的模拟式监测仪表发展到现在的基于计算机的实时在线监测一与故障诊断系统和基于微机的便携式监测分析系统。这类系统一般具有强大的信号分析与数据管理功能,能全面记录反映机器运行状态变化的各种信息,实现故障的精确诊断。随着网络技术的发展,远程分布式监测诊断系统成为目前的一个研究开发热点。

机械设备故障诊断的内容包括

异响诊断,油液渗漏诊断,异味诊断,操作诊断。

机械故障诊断是一种了解和掌握机器在运行过程的状态,确定其整体或局部正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。油液监测、振动监测、噪声监测、性能趋势分析和无损探伤等为其主要的诊断技术方式。机械故障诊断:

1.振动诊断技术:对机器主要部位的振动值如位移、速度、加速度、转速及相位值等进行测定,并对测得的上述振动量在时域、频域、时-频域进行特征分析,判断机器故障的性质和原因。

2.噪声诊断技术:对机器噪声的测量可以了解机器运行请鲁昂并寻找故障源。

3.温度、压力等常规参数诊断技术:机器设备系统的某些故障往往反映在一些工艺参数,入温度、压力、流量的变化中。例如火车轴温在线监控系统,就是利用车轴轴承的温度来监控轴承的运行状态的。常规参数检测的特点是价格便宜,形式多样。

4.无损诊断技术:包括超声波探伤法、X射线探伤法、渗透探伤法和磁粉探伤法等,这些方法多用于材料表面或内部的缺陷检测,应用很广。

5.油液分析技术:油液分析技术可分为两大类:一类是油液本身的物理、化学性能分析;另一类是对油液污染程度的分析。具体的方法有光谱分析法和铁谱分析法。

今天的关于动力机械设备故障诊断技术(机械设备故障诊断技术探索论文)的知识介绍就讲到这里,如果你还想了解更多这方面的信息,记得收藏关注本站。